Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.6k views
in Trigonometry by (71.2k points)
closed by
Prove that: `sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)=1/(64)`

1 Answer

0 votes
by (70.6k points)
selected by
 
Best answer
`L.H.S. = sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14)`
`=sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin(pi-(5pi)/14)sin(pi-(3pi)/14)sin(pi-pi/14)`
`=sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((5pi)/14)sin((3pi)/14)sin(pi/14)`
`=(sin(pi/14)sin((3pi)/14)sin((5pi)/14))^2sin((7pi)/14)`
`=(sin(pi/14)sin((3pi)/14)sin((5pi)/14))^2sin(pi/2)`
`=(sin(pi/14)sin((3pi)/14)sin((5pi)/14))^2*1`
`=(cos(pi/2-pi/14)cos(pi/2-(3pi)/14)cos(pi/2-(5pi)/14))^2`
`=(cos((3pi)/7)cos((2pi)/7)cos((pi)/7))^2`
We know, `(cos((3pi)/7)cos((2pi)/7)cos((pi)/7)) = 1/8`
`:. (cos((3pi)/7)cos((2pi)/7)cos((pi)/7))^2 = (1/8)^2 = 1/64 = R.H.S.`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...