
Let P, Q be two points on the line AB.
Then AP : PB = 1 : 2 and AQ : QB = 2 : 1
AP : PB = 1 : 2 , so coordinate of P is
Coordinate of x = \(1+\frac{1}{3}(5-1)=1+\frac{1}{3}\times4=\frac{7}{3}\)
Coordinate of y = \(6+\frac{1}{3}(2-6)=6-\frac{1}{3}\times4=\frac{14}{3}\)
Coordinate of P is \((\frac{7}{3},\frac{14}{3})\)
AQ : QB = 2 : 1 , so coordinate of Q is
Coordinate of x = \(1+\frac{2}{3}(5-1)=1+\frac{2}{3}\times4=\frac{11}{3}\)
Coordinate of y = \(6+\frac{2}{3}(2-6)=6-\frac{2}{3}\times4=\frac{10}{3}\)
Coordinate of Q is \((\frac{11}{3},\frac{10}{3})\)