Correct Answer - A::B::C
(a) `dF=(p_y)(dA)=(rho g y)(ldy)`
`:. F=int_(0)^(h)dF=(rho glh^(2))/2`
(b) Perpendicular distance of about force point O is
`r_(_|_)=h-y`
`:. dtau=(dF)r_(_|_)=(rho g y)(h-y)dy`
=total torque `=int_(0)^(h) d tau`
After substituting the value we get.
`tau = (rho glh^(3))/(6)`
(c) `Fxxr_(_|_)=(tau)`
`:.r_(_|_) = (tau)/(F)`
Substituting the values we get,
`r_(_|_) = (h)/(3)`