Correct Answer - B
Given that `F(t) = F _(0) e ^(-bt) rArr (m (dv))/ (dt) = F_(0) e^(-bt)`
` (dv) /(dt) = F_(0) / (m) e ^(-bt) rArr int _(0)^(v) (dv) = (F_(0))/(m) int _(0)^(t) e ^(-bt) dt `
` v = (F_(0))/(m) [ (e^(-bt))/ (-b) ]_(0)^(t) = (F_(0))/(m) [ -( e^(-bt) - e^(-0))]`
rArr ` v = (F_(0))/(mb)[ 1 - e^(-bt)]`