Correct Answer - B
AS velocity
`(dy)/(dt) = omega sqrt(A^(2) - y^(2))`…(1)
and acceleration
`(d^(2)y)/(dt^(2)) = - omega^(2)y`
When `y = 0`……(2)
`"Velocity" (dy)/(dx) = omega A` (maximum)
and acceleration `(d^(2)y)/(dt^(2)) = 0`(minimum)
When `y = A, v = (dy)/(dt) = 0` (minimum)
and acceleration `(d^(2)y)/(dt^(2)) = - omega^(2)A` (maximum)
Hence acceleration of a particle executing `SHM` is zero (where velocity is maximum ) at mean position and maximum at exterme position where velocity is minimum .Now let `y = a sin (wt +j)`
Then velocity `(dy)/(dt) = omega cos(omega t + phi)= a omega sin {(omega t + (phi)/(2)) + (pi)/(2)}`
Thus , displecement and velocity of `SHM` difference by `(pi)/(2)` in phase