Velocity at the highest point, `v=0`
(a) `v=u-g t`
`0=40-10 t_(0)impliest_(0)=4 s`
(b) (i) `v^(2)=u^(2)-2gh`
`0=(40)^(2)-2xx10 H_(max)`
`H_(max)=80 m`
(ii) Velocity at half of the maximum height
`v^(2)=u^(2)-2gh`
`v_(1)^(2)=(40)^(2)-2gH_(max)/2`
`=1600-10xx80=800`
`v_(1)=20sqrt(2) m//s`
(c ) Distance covered by the ball in the first `2 s`,
`h_(1)=ut-1/2g t^(2)=40xx2-1/2xx10xx2^(2)`
`=80-20=60 m`
Distance covered in the next `2 s`,
`h_(2)=H_(max)-h_(1)=80-60=20 m`
`h_(1)/h_(2)=60/20=3/1`
(d) Time taken by the ball to cover the fist `40 m`,
`h=ut_(1)-1/2g t_(1)^(2)`
`40=40t_(1)-5t_(1)^(2)impliest_(1)^(2)-8t_(1)+8=0`
`t_(1)=(8+-sqrt((-8)^(2)-4xx1xx8))/2=(8+-4sqrt(2))/2`
`=4+-2sqrt(2)`
`t_(1)=4+2sqrt(2)` is not possible, because we are interested in upward motion only.
`:. t_(1)=4-2sqrt(2)`
Time in next `40 m`,
`t_(2)=t_(0)-t_(1)=4-(4-2sqrt(2))=2sqrt(2) s`
`t_(1)/t_(2)=(4-2sqrt(2))/(2sqrt(2))=((sqrt(2)-1))/1`