Consider two concentric circles with centres at O. Let AB and CD be two chords of the outer circle which touch the inner circle at the points M and N respectively.

To prove the given question, it is sufficient to prove AB = CD.
For this join OM, ON, OB and OD.
Let the radius of outer and inner circles be R and r respectively.
AB touches the inner circle at M.
AB is a tangent to the inner circle
