Correct Answer - A
`f(x)=sec^(-1)(log_(3)tanx+log_(tanx)3).`
`=sec^(-1)(log_(3)tanx+(1)/(log_(3)tanx))`
Now, for `log_(3)tanx in (-oo,oo) " or " log_(3)tanx in R`
Also, ` x+(1)/(x) le -2 " or " x +(1)/(x) ge 2`
i.e., ` log_(3)tan x+(1)/(log_(3) tanx) le -2`
or `log_(3)tan x+(1)/(log_(3) tanx) ge 2`
i.e., `sec^(-1)(log_(3)tan x+(1)/(log_(3) tanx)) le sec^(-1)(-2)`
or `sec^(-1) (log_(3)tan x+(1)/(log_(3) tanx)) ge sec^(-1) 2`
i.e., `f(x) le (2pi)/(3) " or " f(x) ge (pi)/(3)`
i.e., `f(x) in [(pi)/(3),(pi)/(2)) cup ((pi)/(2),(2pi)/(3)]`