If `omega`
is one of
the angles between the normals to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1`
at the
point whose eccentric angles are `theta`
and `pi/2+theta`
, then prove that `(2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))`
A. `(e^(2))/(sqrt(1-e^(2)))`
B. `(e^(2))/(sqrt(1+e^(2)))`
C. `(e^(2))/(1-e^(2))`
D. `(e^(2))/(1+e^(2))`