Correct Answer - 2
In an equilateral triangle, circumcenter and incenter are coincident. Therefore,
Inceter`-= ( -g,-f)`
Point (1,1) lies on the circle. Therefore,
`1^(2)+1^(2)+2g+2f+c=0`
or `c= -2(g+f+1)`
Also, in an equilateral triangle,
Circumradius`=2xx` Inradius
`:. `Inradius `=(1)/(2) xx sqrt(g^(2)+f^(2)-c)`
Therefore, the equation of the incircle is
`(x+g)^(2)+(y+f)^(2)=(1)/(4)(g^(2)+f^(2)-c)` ,brgt `=(1)/(4){g^(2)+f^(2)+2(g+f+1}`