Let the ellipse be
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
and let `A-=(a cos theta, b sin theta)`
The equation of AC will be
`y=(b)/(a) tan thetax`
Solving with x=a/e, we get
`P-=((a)/(e)(b)/(e) tan theta)`
Slop of tangent at `A=-(b)/(a tan theta)`
Slope of `PS=((b)/(e) tantheta)/((a)/(e)-ae)=(b tantheta)/(a(1-e^(2)))=(a)/(b)tan theta`
So, `alpha=(pi)/(2)`