Let the point of intersection of tangents A and B be P(h,k).Then the equation of AB is
`(xh)/(4)+(yk)/(1)=1" "(1)`
Homogennizing ithe equation of ellipse using (1), we get
` (x^(2))/(4)+(y^(2))/(1)=((xh)/(4)+(yk)/(1))^(2)`
or `x^(2)((h^(2)-h)/(16))+y^(2)(k^(2)-1)+(2hk)/(4)xy=0" "(2)`
The given equation of OA and OB is
`x^(2)+4y^(2)+alphaxy=0" "(3)`
Sinc (2) and (3) repreetn the same line,
`(h^(2)-4)/(16)+(k^(2)-1)/(4)=(hk)/(2a)`
`or h^(2)-4=4(k^(2)-1)`
or `h^(2)-4k^(2)=0`
Therefore, the locus is `(x-2y)(x+2y)=0`