Correct Answer - C
If `DeltaABC` has sides a,b,c,
Then `tan(A//2)=sqrt(((s-b)(s-a))/(s(s-a)))`
Where `s=(a+b+c)/(2)`
`rArr s=(2+(7)/(2)+(5)/(2))/(2)=4`
`:. (2 sinP-sin2P)/(2sin P+sin2P)=(2sinP(1-cosP))/(2sinP(1+cosP))`
`=(2sin^(2)(P//2))/(2cos^(2)(P//2))=tan^(2)(P//2)`
`((s-b)(s-c))/(s(s-a))xx((s-b)(s-c))/((s-b)(s-c))`
`=([(s-b)^(2)(s-c)^(2)])/(Delta^(2))((4-(7)/(2))^(2)(4-(5)/(2))^(2))/(Delta^(2))=((3)/(4Delta))^(2)`