Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
129 views
in Mathematics by (91.6k points)
closed by
Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in `s qdotm)` of the flower-bed is: 25 (2) 30 (3) 12.5 (4) 10

1 Answer

0 votes
by (92.4k points)
selected by
 
Best answer
Let `r` is the radius of the circular sector and `theta` is the angle cretaed by it.
Here, perimeter of the circular sector `= r+r+rtheta = 2r+rtheta`
`:. 2r+rtheta = 20`
`=> theta = (20-2r)/r`
Now, area of the circlular sector,`A = 1/2r^2theta`
`A = 1/2r^2((20-2r)/r)`
`=>A = r(10-r) = 10r-r^2`
`=>(dA)/(dr) = 10-2r`
For maximum area, `(dA)/(dr)` should be `0`.
`:. 10 - 2r = 0 => r = 5m`
So, maximum area, `A_(max) = 10r - r^2 = 10(5) - (5)^2 = 25 m^2`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...