Let the points on ellipse be
`p(acos(theta),bsin(theta))` and
`Q(acos(pi/2+theta),bsin(pi/2+theta))=(-asintheta,bcostheta)`
Equation of tangent at point p:
`x/acostheta+y/bsintheta=1`
Equation of tangent at point Q:
`-x/asintheta+y/bcostheta=1`
On solving these equations we get,
`x/a=(costheta-sintheta)`
`y/b=(costheta+sintheta)`
On squaring and adding these equations,
`2=(x/a)^2+ (y/b)^2`
Therefore,
`(x/(asqrt2))^2+(y/(bsqrt2))^2=1`