Correct Answer - B
We have,
`x(dy)/(dx)=ylog((y)/(x))+y`
Putting `y=vx` and `(dy)/(dx)=v+x(dv)/(dx)`, we get
`v+x(dv)/(dx)=vlog v +v`
`rArr" "(1)/(v log v) dv=(1)/(x)dx`
`rArr" "log(logv)=logx+logC" [On integrating]"`
`rArr" "logv=Cx`
`rArr" "log((y)/(x))=Cx`, which is the required solution.