Correct Answer - `(1)/(2){(i +1)z_(1) +(1-i)z_(2)}`
Here, `|(z_(2)-z_(0))/(z_(0)-z_(1))| = 1 and amp ((z_(2)-z_(0))/(z_(0)-z_(1))) = (pi)/(2)`
`therefore (z_(2)-z_(0))/(z_(0)-z_(1)) = 1{cos.(pi)/(2) + i sin .(pi)/(2)} =i`
`rArr z_(2) -z_(0) = iz_(0) = iz_(0)`
`rArr z_(2)+iz_(1) = (i+1)z_(0)`
`or z_(0) = (z_(2) + iz_(1))/(1+i)`
`=((z_(2) + iz_(1))(1-i))/(1^(2)+ 1^(2))`
`=(1)/(2){(i+ 1)z_(1)+(1-i)z_(2)}`