Let `f:R rarr(0,oo) and g:R rarr` R be twice differntiable function such that f' and g' ar continous fucntion on R. Suppose `f(x2)=g(2)=0,f'(2)ne0and g'(2)ne.If lim_(xrarr2) (f(X)g(x))/(f(x)g(x))=1` then
A. f has a local minimum at x=2
B. f has a local maximum at x=2
C. `f'(2)gtf(x)`
D. `f(X)-f'(x)=0 for at least one x in R