An infinite nonconducting sheet has surface charge density s. There is a small hole in the sheet as shown in the figure. A uniform rod of length l having linear charge density `lambda` is hinged in the hole as shown. If the mass of the rod is m, then the time period of oscillation for small angular displacement is
A. `pisqrt((mepsilon_0)/(3sigmalambda))`
B. `2pisqrt((2mepsilon_0)/(3sigmalambda))`
C. `pi/2 sqrt((mepsilon_0)/(3sigmalambda))`
D. `4pi sqrt((mepsilon_0)/(3sigmalambda))`