Correct Answer - b.
`(1)/(-y)-(mu)/(-x)=(1-mu)/(-R)rArr (1)/(y)=(1-mu)/(R)+(mu)/(x)`
When object is at center`:x=R`.
Putting`x=R,` we get `y=R`
Differentiating (i), we get
`-(1)/(y^(2))(dy)/(dt)=-(mu)/(x^(2))(dx)/(dt)rArr (dy)/(dt)=mu((y)/(x))^(2)(dx)/(dt)`
`rArrv=mu((R)/(r))^(2)urArrv=muu`