The energy of the electron in hydrogen-like atom in nth orbit is
`E_(n) = (Z^(2) Rhc)/(n^(2))`
We have `Rhc = 1` rydberg.
The ionization energy
`E_(oo) - E_(1) = Z^(2) Rhc = 4 rydberg`
`:. Z^(2) = (4 rydberg)/(R h c) = (4 rydberg)/(1 rydberg) = 4`
`:. Z = 2`
a. The energy required to excite the electron from `n = 1` to `n = 2` is given by
`E_(2) - E_(1) = - (Z^(2) R h c)/(2^(2)) - ((-Z^(2) R h c)/(1^(2)))`
`= Z^(2) R h c (1 - (1)/(4))`
`= (3)/(4) Z^(2) R h c = (3)/(4) xx 4 Rydberg`
`= 3Rydberg`
If `lambda` is the wavelength of radiation emitted , then
`(h c)/(lambda) = 3 Rydberg`, i.e. `lambda = (h c)/((3 Rydberg))`
`:. lambda = (6.63 xx 10^(-34) xx 3 xx 10^(8))/(3 xx 2.2 xx 10^(-18)`
`= 301.4 xx 10^(-10) m = 301.4 Å`
b. Radius of first Bohr orbit `r_(1) = ((epsilon_(0) h^(2)// pi me^(2)))/(Z)`
`= (Radius of first bohr orbit of hydrogen)/(Z)`
`= (5 xx 10^(-11))/(2)`
2.5 xx 10^(-11) m`