Correct Answer - c
First particle will travel along parabolic path OA. Let time
from O to A is t. `a_y=(-qE)/m`
`x=(sqrt3mv^2)/(qE)=(2v cos 60^@)t_0 implies t_0 =(sqrt3mv)/(qE)`
`v_y=u_y+a_yt_0=2v sin 60^@-(qE)/m (sqrt2mv)/(qE)=0`
Hence at point A, velocity will be purely along x-axis and it will
be `2v cos60^@=v`. Now magnetic field is switched on along y-axis.
Now its path will be helical as shown below with increasing pitch
towards negative y-axis.
`r=(mv)/(qB)`
`x=x_0+r sin theta=(2v cos 60^@)t_0+(mv)/(qB) sin omegat`
`=vsqrt3(mv)/(qB) +(mv)/(qB)sin ((qB)/mt)`
z-coordinate: `z=-(r-rcos theta)=-(mv)/(qB)[1-cos ((qB)/mt)]`