Correct Answer - B::C
`I=I_(C)+I_(L)`
`implies I=I=(E_(0))/(X_(C))` `sin(omega t+pi//2)+(E_0)/(X_L) sin (omegat-pi//2)`
`=[(E_0)/(X_C)-(E_0)/(X_L)] cos omega t`
to find, `I_(v)=|(1)/(sqrt(2)[(E_0)/(X_C)-(E_0)/(X_L)]|`...(i)
Given `I_(Cv)=(E_0)/(sqrt(2)X_(C))=0.4A`, ...(ii) `I_(Lv)=(E_0)/(sqrt(2)X_(L))=1.6 A` ...(iii)
From equations (i) (ii) and (iii) `I_(v)=1.2A`
Dividing (ii) by (iii)
`(X_L)/(X_C)=1/4 implies (omegaL)/(1//omegaC)=1/4 implies omega^(2)LC= 1/4 implies omega=(1)/(2sqt(LC))`.
