Since α and β are the zeroes of polynomial p(x) = 3x2 + 2x + 1
Hence,
\(\alpha + \beta = - \frac 23\)
and \(\alpha \beta= \frac 13\)
Now for the new polynomial,
Sum of the zeroes = \(\frac{1 - \alpha}{1 + \alpha} + \frac{1 - \beta }{1 + \beta }\)
\(= \frac{(1 - \alpha + \beta - \alpha\beta)+(1 + \alpha - \beta - \alpha \beta)}{(1 + \alpha )(1 + \beta)}\)
\(= \frac{2 - 2\alpha \beta}{1 + \alpha + \beta +\alpha \beta}\)
\(= \cfrac {2 - \frac 23}{1 - \frac 23 + \frac 13}\)
\(= \cfrac{\frac43}{\frac 23}\)
\(= 2\)
Product of zeroes = \(\left[\frac{1 - \alpha}{1 + \alpha}\right] \left[\frac{1 - \beta }{1 + \beta }\right]\)
\(= \frac{(1 - \alpha)(1 - \beta)}{(1 + \alpha)(1 +\beta)}\)
\(= \frac{1 - \alpha - \beta + \alpha \beta}{1 + \alpha + \beta + \alpha\beta}\)
\(= \frac{1 - (\alpha + \beta)+ \alpha\beta}{1 + (\alpha + \beta) + \alpha \beta}\)
\(= \cfrac{1 + \frac 23 + \frac 13}{1 - \frac 23 + \frac 13}\)
\(= \cfrac{\frac 63}{\frac 23}\)
\(= 3\)
Hence,
Required polynomial = x2 - (Sum of zeroes)x + Product of zeroes
= x2 - 2x + 5