Correct Answer - `0.149 cm`
Here, `lambda=180xx10^(-19)m=1.80xx10^(-7)m`,
`B=5.0xx10^(-5)T`,
`phi_(0)=2.0eV=2xx1.6xx10^(-19)J`
`=3.2xx10^(-19)J`
As, `1/2mv^(2)=(hc)/lambda-phi_(0)`
`=(6.63xx10^(-34)xx3xx10^(8))/(1.8xx10^(-7))-3.2xx10^(-19)`
`=11xx10^(-19)-3.2xx10^(-19)=7.8xx10^(-19)J`
`v=sqrt((2xx7.8xx10^(-19))/m)=sqrt((2xx7.8xx10^(-19))/(9.1xx10^(-31)))`
`=1.039xx10^(6)ms^(-1)`
The electron moving in a perpendicular magnetic field describes a circular path of radius r, then
`evB=(mv^(2))/r`
or `r=(mv)/(eB)=((9.1xx10^(-19))xx(1.309xx^(6)))/((1.6xx10^(-19))xx(5.0xx10^(-5)))`
`=1.49xx10^(-3)m=1.49mm`