Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
123 views
in Physics by (87.2k points)
closed by
Two coherent point sources `S_(1)` and `S_(2)` vibrating in phase emit light of wavelength `lambda`. The separation between the sources is `2lambda`. Consider a line passing through `S_(2)` and perpendicular to line `S_(1) S_(2)`. Find the position of farthest and nearest minima.
image.

1 Answer

0 votes
by (84.7k points)
selected by
 
Best answer
image
At `P`: path difference
`Deltax=S_(1)P-S_(2)P=sqrt(x^(2)+(2lambda)^(2))-x=sqrt(x^(2)+4lambda^(2))-x`
For minima
`Deltax=(2n+1)lambda/2`
`sqrt(x^(2)+4lambda^(2))-x=(2n-1)lambda/2`
`n=0, sqrt(x^(2)+4lambda^(2))-x=lambda/2`
`sqrt(x^(2)+4lambda^(2))=(x+lambda/2)^(2)`
`x^(2)+4lambda^(2)=x^(2)+lambdax+lambda^(2)/4implies x=(15 lambda)/4`
`n=1, sqrt(x^(2)+4lambda^(2))-x=(3lambda)/2`
`sqrt(x^(2)+4lambda^(2))=(x+(3lambda)/2)`
`x^(2)+4lambda^(2)=x^(2)+3lambdax+(9lambda^(2))/4 impliesx=(7lambda)/12`
`n=2, sqrt(x^(2)+4lambda^(2))-x=(5lambda)/2`
`sqrt(x^(2)+4lambda^(2))=(x+(5lambda)/2)^(2)`
`x^(2)+4 lambda^(2)=x^(2)+5lambdax+(25lambda^(2))/4 implies x=-ve`
`x_(min)=(7lambda)/12`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...