f(x) = \(\frac{x^3}{(x^2+1)(x+1)}\)
= \(\frac{x^3}{x^3+x^2+x+1}\)
= 1 - \(\frac{x^2+x+1}{(x^2+1)(x+1)}\)
Now,
\(\frac{x^2+x+1}{(x^2+1)(x+1)}\) = \(\frac{A}{x+1}\) + \(\frac{Bx+c}{x^2+1}\)
⇒ x2 + x + 1 = A(x2+1)+(Bx+c)(x+1)
Put x = -1, we get
2A = 1-1+1 = 1
⇒ A = \(\frac{1}{2}\)
Put x = 0, we get
A + C = 1
⇒ C = 1 - A
= 1 - \(\frac{1}{2}\)
= \(\frac{1}{2}\)
Put x = 1, we get
2A + 2B + 2C = 3
⇒ 2C = 3 - 2A - 2B
= 3 - 1 - 1
= 1
⇒ C = \(\frac{1}{2}\)
Hence,
\(\frac{x^2+x+1}{(x^2+1)(x+1)}\) = \(\frac{1}{2}\)(\(\frac{1}{x+1}\) + \(\frac{x+1}{x^2+1}\))
∴ f(x) = 1 - \(\frac{x^2+x+1}{(x^2+1)(x+1)}\)
= 1 - \(\frac{1}{2}\)(\(\frac{1}{x+1}\) + \(\frac{x+1}{x^2+1}\))