Correct Answer - A
As the current lags behind ghe potentail difference, the circuit contains resistance and inducntace.
Power, `P = V_("rms") xx i_("rms") xx cos phi` ,
Here,
`i_("rms") = (V_("rms"))/(Z)`, where `Z = sqrt([(R^(2) + (omega L)^(2))])`
`P = (V_("rms")^(2) xx cos phi)/(Z)` or `Z = (V_("rms")^(2) xx cos phi)/(P)`
So, `Z = ((220)^(2) xx 0.8)/(550) = 70.8` ohm
Now, power factor `cos phi = (R )/(Z)` or `R = Z cos phi`
`:. R = 70.4 xx 0.8 = 56.32` ohm
Further,
`Z^(2) = R^(2) + (omega L)^(2)` or `(omega L) = sqrt((Z^(2) - R^(2)))` or
`omega L = sqrt((70.4)^(2) - (56.32)^(2)) = 42.2` ohm
When the capacitor is connected in the circuit,
`Z = sqrt([R^(2) + (omega L = (1)/(omega C))^(2)])` and
`cos phi = (R )/(sqrt([R^(2) + (omega L - (1)/(omega C))^(2)]))`
When `cos phi = 1, omega L = (1)/(omega C)`
`:. C = (1)/(omega (omega L)) = (1)/(2 pi f (omega L))`
`= (1)/((2 xx 3.14 xx 50) xx (42.2)) = 75 xx 10^(-6) F = 75 mu F`