Correct Answer - C
As current I is function of time and at `t=0` and `Deltat`, it equal `i_(0)` and zero respectively it may be represented as, `i=i_(0)(1-(t)/(Deltat))`
Thus `q=int_(0)^(Deltat)idt=int_(0)^(Deltat)i_(0)(1-(t)/(Deltat))dt=(i_(0)Deltat)/(2)`
so, `i_(0)=(2q)/(Deltat)`
The heat generated
`H=int_(0)^(Deltat)i^(2)Rdt=int_(0)^(Deltat)[(2q)/(Deltat)(1-(t)/(Deltat))]^(2)Rdt=(4q^(2)R)/(3Deltat)`