(a) Substituting the values of k, t and `[N_(2)O_(5)]_(0)` into the concentration - time equation, we have
`4.80xx10^(-4)s^(-1)= (2.303)/(825s)log(1.65xx10^(-2)mol L^(-1))/([N_(2)O_(5)]_(t))`
or log `((1.65xx10^(-2)mol L^(-1))/([N_(2)O_(5)]_(t)) = ((4.80xx10^(-4)s^(-1))(825s))/((2.303)))`
`= 0.172`
or `log (([N_(2)O_(5)]_(t))/(1.65xx10^(-2)mol L^(-1)))= -0.172`
To solve for `[N_(2)O_(5)]_(t)` , we take thew antilogarithm of both sides. This removes the long from the left and yield antilog `(-0.172)`, or `10^(-0.172)` , on the right, which equals `0.673`. Thus
`([N_(2)O_(5)]_(t))/(1.65xx10^(-2)mol L^(-1)) = 0.673`
Hence `[N_(2)O_(5)]_(t) = (1.65xx10^(-2)mol L^(-1)) (0.673)`
`= 0.0111 mol L^(-1)`
(b) Writing the integrated first order rate equation we have
`k = (2.303)/(t) log ([N_(2)O_(5)]_(0)/([N_(2)O_(5)]_(t))) `
or `log (([N_(2)O_(5)]_(t))/([N_(2)O_(5)]_(0))) = (-kt)/(2.303)`
Substituting the concentrations and the value of k, we get
`log (((1.00xx10^(-2)mol L^(-1)))/((1.65xx10^(-2)mol L^(-1)))) = (-4.80xx10^(-4)s^(-1)xxt)/(2.303)`
The left side equals `-0.217` , the right side equals `-2.08xx10^(-4)s^(-1)xxt` . Hence
`0.217=2.08xx10^(-4)s^(-1)xxt`
or `t = (0.217)/(2.08xx10^(-4)s^(-1))`
`= 1.04xx10^(3)`