दिया है `f : {1, 2, 3} rarr {a, b, c}`
तथा `g : {(a,b,c} rarr {"apple, ball, cat"}`
माना कि A = {1,2,3), B = {a,b,c} , C = {apple, ball, cat}
दिया f(1) = a
f(2) = b
f(3) = c
तथा g(a) = apple
g(b) = ball
g(c) = cat
यहाँ `gof : A rarr C` इस प्रकार परिभाषित है,
gof(1) = g[f(1)] = g(a) = apple
gof(2) = g[f(2)] = g(b) = ball
gof(3) = g[f(3)] = g(c) = cat
स्पष्टतः f, g, gof एकैकी आच्छादक है और इसलिए `f^(-1), g^(-1)` तथा `(gof)^(-1)` का अस्तित्व है।
अब `f : B rarr A` इस प्रकार परिभाषित है,
`f^(-1)(a) = 1, f^(-1)(b) = 2, f^(-1)(c) = 3`
तथा `g^(-1) : C rarr B` इस प्रकार परिभाषित है,
`g^(-1)` (apple) `= a, g^(-1)` (ball) = b and `g^(-1)` (cat) = c
साथ ही `(gof)^(1) : C rarr A` इस प्रकार परिभाषित है,
`(gof)^(-1)` (apple) =1, `(gof)^(-1)` (ball) = 2, `(gof)^(-1)` (cat) = 3
साबित करना है कि `(gof)^(-1) = f^(-1) og^(-1)`
अब `f^(-1) og^(-1)` (apple) = `f^(-1)[g^(-1) ("apple")] = f^(-1) (a) = 1`
`f^(-1) og^(-1) ("ball") = f^(-1) [g^(-1) ("ball") ] = f^(-1)(b) = 2`
तथा `f^(-1) og^(-1) ("cat") = f^(-1) [g^(-1) ("cat")] = f^(-1)(c) = 3`
इस प्रकार `f^(-1) og^(-1) : C rarr A`
स्पष्टतः `(gof)^(-1) = f^(-1) og^(-1)`
`f^(-1), g^(-1)` तथा `(gof)^(-1)` का अस्तित्व है, दिखने का दूसरा तरीका :
`f^(-1) of (1) = f^(-1)[f(1)] = f^(-1)(a) = 1`
`f^(-1) of (2) = f^(-1)[f(2)] = f^(-1) (b) = 2`
`f^(-1) of (3) = f^(-1) [f(3)] = f^(-1) (c) = 3`
इस प्रकार `f^(-1) of A rarr A` ताकि `f^(-1) of : I_(A)`
अतः `f^(-1)` का अस्तित्व है अर्थात f व्युत्क्रमणीय है
`g^(-1) og : B rarr B` ताकि `g^(-1) og = I_(B)`
अतः `g^(-1)` का अस्तित्व है अर्थात g व्युत्क्रमणीय है तथा `(gof)^(-1) o (gof) = I_(C)`
अतः `(gof)^(-1)` का अस्तित्व है अर्थात gof व्युत्क्रमणीय है।