Let given point be A, B and C with positive vectors `alphahati+betahatj+gammahatk,betahati+gammahatj+alphahatk and gamma hati+alphahatj+betahatk`
As `alpha,beta and gamma` are distinct real numbers, therefore ABC form a triangle.
Clearly, `AB=OB-OA=(betahati+gammahatj+alphahatk)-(alphahati+betahatj+gammahatk)`
`=(beta-alpha)hati+(gamma-beta)hatj+(alpha-gamma)hatk`
Now, `|AB|=sqrt((beta-alpha)^(2)+(gamma-beta)^(2)+(alpha-gamma)^(2))`
Similarly, `BC=CA=sqrt((beta-alpha)^(2)+(gamma-beta)^(2)+(alpha-gamma)^(2))`
`thereforeDeltaABC` is an equilateral triangle.