Let I = ∫ 1/(2 + 3 tan x) dx

Numerator = A (Denominator) + B [d/dx (Denominator)]
∴ cos x = A(2 cos x + 3 sin x) + B [d/dx (2 cos x + 3 sin x)]
= A (2 cos x + 3 sin x) + B (-2 sin x + 3 cos x)
∴ cos x = (2A + 3B) cos x + (3A – 2B) sin x
Equating the coefficients of cos x and sin x on both the sides, we get
2A + 3B = 1 …… (1)
and 3A – 2B = 0 ……. (2)
Multiplying equation (1) by 2 and equation (2) by 3, we get
4A + 6B = 2
9A – 6B = 0
On adding, we get
