Correct option is (B) 5BC2

\(\because\) BL is median
\(\therefore\) \(AL=CL=\frac{AC}2\)
& CM is median
\(\therefore\) \(AM=BM=\frac{AB}2\)
By applying Pythagoras theorem in right \(\triangle BAC,\) we get
\(BC^2=AB^2+AC^2\) ____________(1)
By applying Pythagoras theorem in right \(\triangle MAC,\) we get
\(CM^2=AC^2+AM^2\) ____________(2)
By applying Pythagoras theorem in right \(\triangle BAL,\) we get
\(BL^2=AB^2+AL^2\) ____________(3)
By adding (1) & (2), we get
\(BL^2+CM^2=AB^2+AC^2+AL^2+AM^2\)
\(=AB^2+AC^2+(\frac{AC}2)^2+(\frac{AB}2)^2\) \((\because AM=\frac{AB}2\;\&\;AL=\frac{AC}2)\)
\(=AB^2+AC^2+\frac14(AB^2+AC^2)\)
\(=BC^2+\frac14BC^2\) (From (1))
\(=\frac54BC^2\)
\(\therefore\) \(4(BL^2 + CM^2) =\) \(5BC^2\)