Correct option is (A) 7 or -7
Given quadratic equation is
\(x^2+ px + 12 = 0\)
\(\therefore\) Sum of roots = -p
\(\Rightarrow\) \(\alpha+\beta\) = -p _______________(1)
Product of roots = 12
\(\Rightarrow\) \(\alpha\beta\) = 12 _______________(2)
Given that \(\alpha-\beta\) = 1 _______________(3)
Now, \((\alpha+\beta)^2=(\alpha-\beta)^2+4\alpha\beta\)
\(=1^2+4\times12\) (From (2) & (3))
\(=1+48=49\)
\(\Rightarrow\) \(\alpha+\beta\) \(=\pm7\)
\(\Rightarrow\) -p \(=\pm7\) (From (1))
\(\Rightarrow\) p \(=\mp7\)
\(\Rightarrow p=-7\;or\;p=7\)
Hence, value of p is -7 or 7.