Correct answer is (c) 1/2
cos θ = √3/2
cos θ = cos 30°
θ = 30°
Now,
\(\frac{cosec^2\,\theta - sec^2\,\theta}{cosec^2\,\theta + sec^2\,\theta}\)
\(=\frac{cosec^2\,30^\circ - sec^2\,\theta}{cosec^2\,30^\circ + sec^2\,\theta}\)
\(=\frac{(2)^2 - \left(\frac{2}{\sqrt{3}}\right)^2}{(2)^2 + \left(\frac{2}{\sqrt{3}}\right)^2}\)
\(=\frac{4 - \frac{4}{3}}{4 + \frac{4}{3}}\)
\(=\cfrac{\frac{12 - 4}{3}}{\frac{12 + 4}{3}}\)
\(=\frac{8}{16}\)
\(\Rightarrow \frac{1}{2}\)