Correct option is (D) -p/q
Let \(\alpha\;and\;\beta\) are roots of equation \(x^2+px+q=0.\)
\(\therefore\) Sum of roots \(=\frac{-p}1=-p\)
\(\Rightarrow\) \(\alpha+\beta\) = -p ______________(1)
& Product of roots \(=\frac{q}1=q\)
\(\Rightarrow\) \(\alpha\beta\) = q ______________(2)
Now, \(\frac1\alpha+\frac1\beta=\frac{\alpha+\beta}{\alpha\beta}\) \(=\frac{-p}{q}\)
Hence, the sum of reciprocals of the roots of given equation is \(\frac{-p}{q}.\)