Correct option is (C) b2 = ac
Given that a, b, c are in G.P.
\(\therefore b=ar\)
\(c=ar^2\)
\(\Rightarrow\frac{ar^2}{ar}=\frac cb\;\&\;\frac{ar}a=\frac ba\)
\(\Rightarrow r=\frac cb\;\&\;r=\frac ba\)
\(\Rightarrow \frac cb=\frac ba\)
\(\Rightarrow\) \(b^2 = ac\)