`A=|{:(3,1),(-1,2):}|`
`A^(2)=A:A=|{:(3,1),(-1,2):}||{:(3,1),(-1,2):}|`
`=|{:(9-1,3+2),(-3-2,-1+4):}|=|{:(8,5),(-5,3):}|`
`"Now, L.H.S. ="A^(2)-5A+7I`
`|{:(8,5),(-5,3):}|-5|{:(3,1),(-1,2):}|+7|{:(1,0),(0,1):}|`
`|{:(8,5),(-5,3):}|+|{:(-15,-5),(-5,-10):}|+|{:(7,0),(0,7):}|`
`|{:(0,0),(0,0):}|=0=R.H.S `
Again `|A|=|{:(3,1),(-1,2):}|=6-(-1)=7ne0`
`therefore A^(-1)` exists.
We have proved that `A^(2)=5A+7I=0`
`rArr" "A^(-1)(A^(2)=5A+7I)=0`
`rArr" "A-5I+7A^(-1)=0`
`rArr" "7A^(-1)=|{:(5,0),(0,5):}|-|{:(3,1),(-1,2):}|-|{:(3,1),(-1,2):}|`
`rArr" "7A^(-1)=|{:(5,0),(0,5):}|-|{:(3,1),(-1,2):}|=|{:(2,-1),(1,3):}|`
`rArr" "A^(-1)=1/7|{:(2,-1),(1,3):}|`