\(\frac{x^2 + 1}{(x - 1)^2 (x + 3)} = \frac A{(x - 1)^2} + \frac B{(x - 1)} + \frac C{(x + 3)}\)
\(= \frac{Ax + 3A + B[(x - 1)(x + 3)] + C(x - 1)^2}{(x - 1)^2 (x + 3)}\)
\((x^2 + 1) = Ax + 3A + 8x^2 - 3B + 2Bx + Cx^2 + C - 2Cx\)
Coeff. of x2 = 1 = (B + C) ......(1)
Coeff. of x = 0 = A + 2B - 2C .....(2)
Coeff. of constant = 1 = 3A - 3B + C ......(3)
(2) + (3),
4A - B - C = 1
Using eq. (1),
4A - 1(1) = 1
4A = 2
⇒ A = \(\frac 12\)
Put A in eq. (2),
A + 2B - 2C = 0
(B - C) = \(- (\frac 12). \frac 12\)
B - C = \(- \frac 14\)
B + C = 1
2B = \( \frac 34\)
⇒ B = \( \frac 38\)
C = \( \frac58\)
⇒ \(\int \frac{(x^2 + 1)}{(x - 1)^2 (x + 3)^2} dx =
\int \frac A {(x - 1)^2} dx+ \int \frac{B}{x - 1} dx + \int \frac{C}{x + 3} dx\)
\(= \frac 12 \int \frac 1{(x - 1)^2} dx + \frac 38 \int \frac 1{x - 1} dx + \frac 58 \int \frac 1{x + 3} dx\)
\( (x - 1) = t\)
\(dx = dt \)
\(= \frac 12 \int \frac 1{t^2} dt + \frac {3}{8} \log|x - 1| + \frac 58 \log|x + 3| + C\)
\(= \frac 12 \int {t^{-2}} dt + \frac {3}{8} \log|x - 1| + \frac 58 \log|x + 3| + C\)
\(= \frac 12 \int \frac{{t^{-2+1}}}{-2 + 1} + \frac {3}{8} \log|x - 1| + \frac 58 \log|x + 3| + C\)
\(= -\frac 12 \int \frac{1}{x-1} + \frac {3}{8} \log|x - 1| + \frac 58 \log|x + 3| + C\)