The vertices of a triangle are `A(x_1,x_1tantheta_1),B(x_2, x_2tantheta_2),`
and `C(x_3, x_3tantheta_3)dot`
If the
circumcenter of ` A B C`
coincides
with the origin and `H(a , b)`
is the
orthocentre, show that
`a/b=(costheta_1+costheta_2+costheta_3)/(sintheta_1+sintheta_2+sintheta_3)`