Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.1k views
in Probability by (91.3k points)
closed by
8n players `P_(1),P_(2),P_(3),....,P_(8n)` play a knock out tournament. It is known that all the players are of equal strngth. The tournat random is held in three rounds where the players are paired at random in each rouns. If it is given that `P_(1)` wins in the third round. Find the probability than `P_(2)` loses in the second round.

1 Answer

0 votes
by (94.1k points)
selected by
 
Best answer
Let A be the event of `P_(1)` winning in third round and B be the event of `P_(2)` winning in first round but ossing in second round. We have
`P(A)(""^(8n-1)C_(n-1))/(""^(8n)C_(n))=1/8`
`P(BnnA)`
= Probability of both `P_(1) and P_(2)` winning in first round `xx` Probability of `P_(1)` winning and `P_(2)` losing in second round `xx` probability of `P_(1)` winning in third round
`(""^(8n-2)C_(4n-2))/(""^(8n)4_(n))xx(""^(4n-2)C_(2n-1))/(""^(4n)C_(2n))xx(""^(2n-1)C_(n-1))/(""^(2n)C_(n))=(n)/(4(8n-1))`
Hence, `P((B)/(A))=(P(BnnA))/(P(A))=(2n)/(8n-1)`
Alternate solution:
Probability than `P_(2)` wins in first round given `P_(1)` wins is
`P((B)/(A))=(P(BnnA))/(P(A))=(2n)/(8n-1)`
In second round, probability that `P_(2)` loses in second round given `P_(1)` wins in
`1-(2n-1)/(4n-1)=(2n)/(4n-1)`
Hence, probability than `P_(2)` loses in second round, given `P_(1)` wins in third round is 2n/(8n-1).

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...