Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
2.0k views
in Vectors by (91.3k points)
closed by
If the two adjacent sides of two rectangles are reprresented by vectors `vecp=5veca-3vecb, vecq=-veca-2vecband vecr=-4 veca-vecb,vecs=-veca+vecb`, respectively, then the angle between the vectors `vecx=1/3(vecp+vecr+vecs) and vecy=1/5(vecr+vecs)` is
A. `-cos^(-1)(19/(5sqrt43))`
B. `cos^(-1)(19/(5sqrt43))`
C. `picos^(-1)(19/(5sqrt43))`
D. cannot of these

1 Answer

0 votes
by (94.1k points)
selected by
 
Best answer
Correct Answer - b
we have
`vecp.vecq = 0 `
`Rightarrow ( 5veca - 3vecb) . (-veca - 2vecb) =0`
`Rightarrow 6|vecb|^(2) - 5|veca|^(2) = 7 veca. Vecb =0`
Also, `vecr. Vecs=0`
`Rightarrow ( -4veca -vecb) (-veca + vecb) =0`
`Rightarrow 4|veca|^(2) - |vecb|^(2) - 3 veca. vecb= 0`
Now, `vecx,= 1/3 (vecp + vecr +vecs)`
` =1/3 (5 veca - 3vecb -4veca - vecb - veca + vecb)=- vecb`
` and vecy = 1/5 (vecr + vecs) = 1/5 (-5veca) = -veca`
Angle between `vecx and vecy` i.e.
` cos theta = (vecx. vecy)/(|vecx||vecy|) = (veca.vecb)/(|veca||vecb|)`
from (i) and (ii)
`|veca|= sqrt(25/19) sqrt(veca. vecb) and |vecb| = sqrt(43/19) sqrt(veca. vecb)`
`|veca||vecb|= (sqrt(25 xx 43))/ 19 . veca . vecb`
` theta = cos^(-1) (19/ (5 sqrt(43)))`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...