Correct Answer - A
`(a)` `|{:(.^(x)C_(r),.^(x)C_(r+1),.^(x)C_(r+2)),(.^(y)C_(r ),.^(y)C_(r+1),.^(y)C_(r+2)),(.^(z)C_(r ),.^(z)C_(r+1),.^(z)C_(r+2)):}|-|{:(.^(x)C_(r),.^(x+1)C_(r+1),.^(x+2)C_(r+2)),(.^(y)C_(r ),.^(y+1)C_(r+1),.^(y+2)C_(r+2)),(.^(z)C_(r ),.^(z+1)C_(r+1),.^(z+2)C_(r+2)):}|`
In first determinant apply `C_(3)toC_(3)+C_(2)` and `C_(2)toC_(2)+C_(1)` and then agan `C_(3)toC_(3)+C_(2)`