(a) \(\frac 1R = \frac1r + \frac1 r + \frac1r\)
\(\frac 1R = \frac3r\)
\(R = \frac r3\)
\(R = \frac r3 + r\)
\(R = \frac{4r}3\)
(b) \(\frac 1R = \frac1r + \frac1 r \)
\(\frac 1R = \frac2r\)
\(R = \frac r2\)
\(\frac 1R = \frac1r + \frac1 r \)
\(\frac 1R = \frac2r\)
\(R = \frac r2\)
then
\(\frac 1R = \frac1R + \frac1 R\)
\(\frac 1R = \frac2r + \frac2r \)
\(\frac 1R = \frac4r\)
\(R = \frac r4\)
(c) \(R = r + r + r + r\)
\(R_1 = 4r\)
\(\frac 1R = \frac1r + \frac1 r \)
\(R_2 = \frac r2\)
then
\(R = R_1 + R_2\)
\(R = 4r + \frac r2\)
\(R = \frac{9r}2\)