If one of the roots of the equation `ax^2 + bx + c = 0` be reciprocal of one of the `a_1 x^2 + b_1 x + c_1 = 0`, then prove that `(a a_1-c c_1)^2 =(bc_1-ab_1) (b_1c-a_1 b)`.
A. `(aa_(1)-"cc"_(1))^(2) = (bc_(1) - b_(1) a)(b_(1)c - a_(1)b)`
B. `(ab_(1)-a_(1)b)^(2) = (bc_(1) - b_(1) c)(ca_(1) - c_(1)a)`
C. `(bc_(1)-b_(1)c)^(2) = (ca_(1) - a_(1) c)(ab_(1) - a_(1)b)`
D. none of these