Given :
Mass of urea = 5.6 g
To find :
The number of moles and molecules of urea
Formulae :
i. Number of moles = \(\frac{Mass\,of\,a\,substance}{Molar\,mass\,of\,a\,substance}\)
ii. Number of molecules = Number of moles × Avogadro’s constant
Mass of urea = 5.6 g
Molecular mass of urea,
NH2CONH2
= (2 × Average atomic mass of N) + (4 × Average atomic mass of H) + (1 × Average atomic mass of C) + (1 × average atomic mass of O)
= (2 × 14 u) + (4 × 1 u) + (1 × 12 u) + (1 × 16 u)
= 60 u
∴ Molar mass of urea = 60 g mol-1
∴ Number of moles = \(\frac{Mass\,of\,a\,substance}{Molar\,mass\,of\,a\,substance}\)
= \(\frac{5.6g}{60g\,mol^{-1}}\)
= 0.09333 mol
[Calculation using log table : \(\frac{5.6}{60}\)
= Antilog10[log10(5.6) – log10(60)]
= Antilog10 [0.7482 – 1.7782]
= Antilog10 \(\overline{2} .9700\)
= 0.09333]
Now,
Number of molecules of urea
= Number of moles × Avogadro’s constant
= 0.09333 mol × 6.022 × 1023 molecules/mol
= 0.5616 × 1023 molecules (by using log table)
= 5.616 × 1022 molecules
∴ Number of moles of urea = 0.0933 mol
Number of molecules of urea = 5.616 × 1022 molecules
[Calculation using log table :
0.09333 × 6.022
= Antilog10[log10(0.09333) + log10(6.022)]
= Antilog10[ \(\overline{2} .9698\) + 0.7797]
= Antilog10 \(\overline{1} .7495\)
= 0.5616]