Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
152 views
in Matrices by (15 points)
recategorized by

Find the Inverse? \[ A=\left[\begin{array}{lll} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{array}\right] \quad A^{-1}=? \]

Please log in or register to answer this question.

1 Answer

+2 votes
by (33.2k points)

We have A = IA

\(\begin{bmatrix}2&1&1\\3&2&1\\2&1&2\end{bmatrix}=\) \(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\)A

Applying R3 → R3 — R1

R2 → 2R— 3R1

\(\begin{bmatrix}2&1&1\\0&1&-1\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}1&0&0\\-3&2&0\\-1&0&1\end{bmatrix}\)A

Applying R2 → R2 + R3

\(\begin{bmatrix}2&1&1\\0&1&0\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}1&0&0\\-4&2&1\\-1&0&1\end{bmatrix}\)A

Applying R1 → R— R— R3

\(\begin{bmatrix}2&0&0\\0&1&0\\0&0&1\end{bmatrix}=\) \(\begin{bmatrix}6&-2&-2\\-4&2&1\\-1&0&1\end{bmatrix}\)A

Applying R1 → \(\frac{R_1}2\)

\(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}3&-1&-1\\-4&2&1\\-1&0&1\end{bmatrix}\)A

Hence A-1 = \(\begin{bmatrix}3&-1&-1\\-4&2&1\\-1&0&1\end{bmatrix}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...