We have A = IA
\(\begin{bmatrix}2&1&1\\3&2&1\\2&1&2\end{bmatrix}=\) \(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\)A
Applying R3 → R3 — R1
R2 → 2R2 — 3R1
\(\begin{bmatrix}2&1&1\\0&1&-1\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}1&0&0\\-3&2&0\\-1&0&1\end{bmatrix}\)A
Applying R2 → R2 + R3
\(\begin{bmatrix}2&1&1\\0&1&0\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}1&0&0\\-4&2&1\\-1&0&1\end{bmatrix}\)A
Applying R1 → R1 — R2 — R3
\(\begin{bmatrix}2&0&0\\0&1&0\\0&0&1\end{bmatrix}=\) \(\begin{bmatrix}6&-2&-2\\-4&2&1\\-1&0&1\end{bmatrix}\)A
Applying R1 → \(\frac{R_1}2\)
\(\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=\)\(\begin{bmatrix}3&-1&-1\\-4&2&1\\-1&0&1\end{bmatrix}\)A
Hence A-1 = \(\begin{bmatrix}3&-1&-1\\-4&2&1\\-1&0&1\end{bmatrix}\)