
Area = A
Density = ρ
Length = L
Yang modulus = Y
Mass per unit length = M/L
Mass of AB = \((\frac{M}L)x = \frac{Mx}L\)
\(\therefore\) M = ρ.v = ρ(A .L)
Mass of AB = \(\frac{\rho ALx}L\)
= ρ Ax
T = mg
T = ρAxg
Stress = ρAx
Streacting energy stored in wire
E = \(\frac{1}2\) x stress x strain x volume
\(\because\) Strain = \(\frac{stress}y\)
then
E = \(\frac{1}2\) x \(\frac{stress}y\) x stress x volume
E = \(\frac{1}{2y}\)(stress)2 x volume
\(\because\) stress = ρgx
for dx
dE = \(\frac{1}{2y}\)(ρgx)2 x (dx) x A
∫dE = \(\int\limits_0^L\frac12\times\frac{\rho^2g^2x^2}{y}\)A dx
∫dE = \(\frac{\rho^2g^2A}{2y}(\frac{x^3}3)_0^L\)
E = \(\frac{\rho^2Ag^2L^3}{6y}\)