Correct option is: \(\frac{5\,GMm}{6R}\)
Given mass of satellite = M
mass of the surface = M
Radius = R
Altitude h = 2R
Gravitational potential energy = \(-\frac{GMm}{r}\)
Gravitational potential energy at Altitude = \(-\frac{GMm}{r+h}\)
= \(-\frac{GMm}{R+2R}\)
= \(-\frac{GMm}{3R}\)
Orbital velocity Vo2 = \(\frac{GM}{R+h}\)
Vo2 = \(\frac{GM}{3R}\)
total potential energy E = kinetic energy + potential energy
Ef = \(\frac{1}{2}\)mvo2 + \((-\frac{GMm}{3R})\)
∵ Vo2 = \(\frac{GM}{3R}\)
Ef = \(\frac{1}{2}\) \(\frac{GMm}{3R}-\frac{GMm}{3R}\)
Ef = \(\frac{GMm-2\,GMm}{6R}\)
Ef = \(-\frac{GMm}{6R}\)
Ei = Ef
the minium energy required
= \(\frac{GMm}{R}-\frac{GMm}{6R}\)
= \(\frac{6\,GMm-GMm}{6R}\)
Minimum energy required = \(\frac{5\,GMm}{6R}\)